
ON A REiFIN~MtY OF THE CUMSICAL 
THEORY 08' BENDINGI OF CIRCULAR PLATEB 

(Received February 2gj 1964) 

A method proposed in Clf for refining the elassicaf theory of bending of 
plate8 is considered in applfcation to the problem of a circular plate and 
an infinite plate with a cfroular hole. 

1, The problems formulated are solved in cylindrical coordinates. The 
origin af' the cylindrical system is chosen at the center of the circumference 
of the plate In its middle plane, and the z-axis is perpendicular to this 
plane. The thickness of the plate is 2?j a and its radius Is R. The state 
of stress in the plate is the sum of the basic state of stress, as it was 
called in [I]* and two auxiliary states of stress which decay rapidly with 
distance from the edge. 

In the integratZon of the equations of the three-dimensional problem in 
elasticity theory, all stresses and displacements Q are written in the form 

(1.1) 

where p is an integer whtch in each iteration process for the various 
stresses and displacements is chosen in the same manner as in [I]. 

For the basic state of stress which is constructed by means of the basic 
Iteration process, Q has the values 

g’2 for or, a,, zrer q=l far Tr2, -fJr 

q=O 
(12) 

for o;, q”2 for u, u, q”3 for 8: 

The system of equations [If which is satisfied at each approximation by 
the stresses and displacements Q(*) of this state of stress has in the pre- 
sent case the following form In cy~indrlcal coordinates: 
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*ads’ - = cry(‘) - v (~g(~‘-~u~(~-~)), E 1 ad6 
ar 

r ae = lJo(s’ - v (p + ($2’) (1.3) 

cont. 
E aw@’ 

ag = =z 
(a-4) _ v (+8-2) + a,@-29 , E 

( 

; ~+!!!pg =2(1+v)2,(,8) _ 

E t$ + ;$.?) = 2 (1 + v) T,$-~), 
( 

E (!$! + !.$!) = 2 (1 + v) 21v-2) 

The solution of the system (1.3) is represented ae the sum Qi(“-k Q*(“, 
where 

Fp, 
Is the solution of the homogeneous system which we obtain by 

discard ng terms In Equations (1.3) with the euperacripte (B-2) and (e-4), 
and Q*(@ Is any particular solution of the inhomogeneous system (1.3), In 
which the quantities with superecrlpts (8 -2) and (8-b) are treated as 
known. We easily obtain the solution Qi@) In the form 

u+(s) = I&J@) (r, e), Ui@) = g& (r, e), Y.(S) = CL@) (r, 6) * 

0;;) = @$) (r, e), ~2) = <c$) (r, e) 

Z$ = &(88 (r, e) , ~$2 = Pt,!82) (r, e) + T$J (r, e) (1.4) 

z&) = 5%!6,) (r, 6) + ze$ (r, e), 6;:’ = Pu,f) (r, e) + fa,is) (r, e) 

(where only those powers of C which correspond to the problem of bending 
are retained). 

We also have the relations 

I#) = &$) ) VI(S) = _ 1 &P) 

G$)=- E ,,iL$+v~;!!&@:&$!~, 

% 
(8)=1_ E 

[ 

1 &#) + 1 azwo@) &&(8) 

1 -va r ar -+yjy- ra a82 1 
z,(esl) =- E [ 

1 azwp 1 awe(8) 

1+v rarae-Fae 1 
E r (6) - 

rr2 
a (AU@)), 

- 2 (I- vz) ar 
r,!8,) = 2 (1 !_ +) ; & (Ad*)) 

02;) = - 
E 

AA&), 
a2 

6 (1 - v*) A=p+ 

(1.5) 

The quantitlea Q* (‘) are expressed In an elementary way In quadraturea 
with respect to C . Recursion formulae forthem are sMlar to the corres- 
ponding formulas In Cartesian coordinates. As in Cartesian coordinates, 
Q * (8) G 0 for 8 = 1, 2. 

Applying the boundary conditions on the upper and lower planes of the 
plate 

u 0) = $-lisp (r, e), crL@) = 0 (s>2), L - 2,f) = to!) = 0 t8a1) for 6=&i 
(1.6) 

we obtain 
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‘Ceze - (1) - -_ zo!$), $(,2o) = - T (2) 
8229 

T&“o) L- - T $ - se; (8) 
_I 

(8 > 2) _ 

From Formulas (1.4) and (1.5) it Is clear that the quantities QitY) are 
expressible In terms of the function W$s)S hiriCh SatiSfieS &UatiOn 

,Ll z 
2EhS 

3 (1 - 9) 
(1.8) 

2. The states of stress which can be made to decay rapidly as desired 
with distance from the edge for sufficiently small h are determined In [l] 
with the help of the first and second variants of the auxlllarv Iteration 
process. 

For the first variant, Q In Formula (1.1) takes the following values: 

q--h for Tr!Jr Ter, q=h--l for cfr, ‘3g, T,@, T,, 
q=h--2 for u, w, q=h--1 for v 

(2.U 

The system of equations for Q(1j(*) In this case takes the form 

(2.3) 

Here and In the sequel the variables p and C are Introduced by the 
substitution 

The rate of change of all the stresses and dlsplacemenLs with respect to 
the variables p , e and C Is assumed to be of the same order. The quan- 
tity r entering In the equations Is defined by the equality r = H - 6h. n 
where 0 < & < 1. 

e sol t on of the system (2.2) and (2.3) is also obtained In the form 
QtljR= Q($3+ Qcl)* (“, where Q(#l and Q * (8) have the same meaning as In 
the basic Iteration process. 

(1) 

It IP easily seen that In cylindrical coordinates only QC1;’ (I) will be 



Zero (in Cmtesian GoctrdZnates QC1)* Of and f&,* (‘ff %re fdenticafly aerof 

The equations sat;isf&?d by Q~X~fs3t break down into tie systexas, of which 
Ithe basle one is the h~~o~~~e~~~ sysr;em ~orras~o~d~~ $0 (2.3), The equa- 
tions of this basic sysl;em coincide with the equations of torslEon of a pris- 
matic rod, 

Isl It is easily shown that the quauztSties Q(I). am! expressible in terms of 
the h%rm~nle function Ifp,C) in the following manner: 

The homogeneous s-atem, &ich we obtain by 
tlepns (2.6) and (2.1 f 

setti 
wz.th superscslpts (s -If 7 

ihe qua&ities 5n Equa- 
and 6 - 2) equal to zero, 

breaks into two systems, of which the basic system is the one corresponding 
to (2r6). The equatlan8 of the basic system coZnGide with the eqiuations of 
the problem of plane deformation. 

The atresses and displacements Q,,,f’1 
manic Sunctian II@@ (p+ {)_ 

are expre@srsd it3 terms OS the bih&F- 

-!I&e boundary conditions Sor these SunCtfons wet*@ introduced zLn [Xl in Car- 
tesian coordinates; 
senoe OS terms with 

in oylindric%l.caordinates they differ on& by the pre- 
Qttt * (?8 and Qi+)* 1?j, 

4 
In the case of a plate with free edges, one takes X = 2 , fi * 2 irr 
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Formulas (2.1) and (2.5). 

For the determination of the function u+,!'~ we have Equation (1.8), in 
which oz+@) on the right-hand side is determined by Formula (l-7), in parti- 
cular 

(1) = - '/ap, IQ) = 0, a$’ = 
8 - 3v 

0 23 40 (1 - vjAP 
(2.F) 

The boundary conditions for the first three approximations for r = R 
take the form 

(2.9) 

-1 
The function yr@) is harmonic, I.e. A?@') (p, 5) = 0 in the region 
p<Rlh, c==fl. 
As p- 0 the function y@) together with its derivatives up to the second 

order must vanish, this ensures the decay of this state of stress with dis- 
tance inward from the edge of the plate. 

The boundary conditions for y ts) in particular for y(l) and y(s?, have the , 
form 

a~@)/ at= 0 fur i=fl 

(2.10) 

is) 
~h~~~~~t~l~, 

is biharmonic, i.e. AA@@) (p,{)= 0 in the region 
and It must vanish together with Its derivatives up to 

p-o. 

The boundary conditions for Q(S). in particular, for @(lJ and CD'*), have 
the form 

for 5 = f 1 Q(S) 2 0, aa-J(s) / ag = 0 

We note that in the axisymmetric c ng of a plate, we have homo- 
geneous equations in the functions y and y(e' with homogeneous 
boundary conditions, hence In this case these functions are identically zero. 



4. We will call the rate of growth or decay (with decreasing h 
stresses and displacements their order. Then It follows from (1.2) 
order of the stresses and displacements determined by the function 

#) = As-4zDc(@, 

is 

723 

) of the 
that the 

ar, ae, -qe - he3 9 ~rz* Ter _ hs-2, 6, - h-l, u, v- ha-‘, w - he-’ (4.1). 

while the quantities associated with ytS), are from (2.1) 

zre, rez- hs-‘, ar, uc, uz, z,,~ CI hse2, u, w - hsel, v - h8-2 (4.2) 

and It Is clear from (2.5) that the quantities related to @("), are 

u,., ug, u,, T,.~ - h8-2, Q,, zez d hs-‘, u, w c hs-‘; v-h’ (4.3) 

The problem of deriving various approximate theories of bending of a plate 
may be treated as a problem of carrying out some number of approximations in 
the basic and auxiliary iteration processes. Thus, the classical theory may 
be considered as the problem of forming the first approximation of the basic 
iteration process. 

The basic state of stress determines more or less accurate1 
far from the edges of the plate. For s = 1 It follows from 7 

the stresses 
4.1) that far 

from the edges of the plate the main stresses are o,,oe and Z,e; the stres- 
ses f,,, 50, and particularly oz are secondary stresses. 

For the free edge of a plate (here we consider only the free edge), there 
are superimposed on the basic state of stress additional states of stress 
which decay very rapidly (for small h ) with distance from the e 
order of these edge stresses can be seen from Formulae (4.2) and "&". ( .3).%r 
*= 1 it follows from (4.2) that the corrections obtained at the e&e in 
ige principal stresses of-the basic state of stress are relatively ~$11 for 
r and on but the correction In T,~ la of the same order as 't,e itself 

in the basic state of stress. Moreover, the stress Tel, attains the same 
order at the edge as the principal stresses In the basic state of stress. 
(According to classical theory even the order of. zez at the edge cannot be 
determined correctly) Wenote that the presence on the free edge of stressee 
t 
&$a1 

and To2 of the same order as the principal stresses determlned by clas- 
theory Is due to the twisting of the edge. 

From the preceding analysis which refers only to the case of a free edge, 
it follows that with the help of the classical theory of plates, the state 
of stress mav be determined in the first aonroxlmatlon both far from the 
edge and on the edge only In the axisymmetrlc case of bending, where there 
1s no twisting of the edge, In the nonaxisymmetrlc case it is necessary to 
construct the functions ~,(~)s.nd vr(U in order to determine In the first 
approximation the state of"stress both far 
from the edge and at the edge. The stres- 
ses or, 00, 5,~ and zez will be the ausntl- 
ties of order hJ, while T,, -Pi', o,e ho. 

The first refinement, I.e. retaining 
terms of order h In comparison to terms 
of order ho, Is determined by the func- 
tion w,,c2); far from the edge. In order to 
obtain a refinement of the same order ln 
the edge stresses, It is necess 
struct the functions @cl) and \y(e as well. arJy 

to corr 

In the axisymmetrlc case of bending, 
wo - '(2)= U, hence the first reflnementlnthe 
stresses far from the edge Is determined 
by the function w,,(3) and for or, oe and 
Ge will be of order ho. 

We will consider some examples, repla- 
cing w,,(SJ everywhere in tkje following by 
the function w(*) = hs-4wo(S ,the meaning of Fig. 1 
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which 1s clear from the series (1.1) for m ln the basic iteration process. 

5. A circular plate of radius A and thickness 2h with a free edge 1s 
bent under the action of an axlsymmetrlc load of intensity 

p== pocos nr 

The load will be self-equilibrating If n satisfies Equation 

2kx ?&R 
fi=----- 

R 
or tan---= 

2 nR (k = i, 2, 3, . . *) (5.1: 

We will refine the values of the stress only far from the edge, for which 
we need construct only the functions ~(1) and w@) 

For &) In the axlsymmetrlc case we have 

($ + g)” w(l) = $f cos nr, Ispi” = 0, 2,!1,) = 0 for r = R 

whence 

&) =z _ 
P,?Z 

8DnZ (1 + v) I 
-~40snR-(3+v)+~sinnR-~(*_~OsnR~- 

-2(1+v)F(R)]+~~[-~sinn'+~Cossr+(~- rs)F(r)](F(r)=\i-y n'dr) 

For wt3' we obtain Equation 

( d2 l d 
M-rTr 1 

lw(31 = L@ - 3v) P&S 
D 10 (1 - v) C 

n sin nr 
n2cosnr+~ 

1 

1 - cos nR 
n2Re 1 for r = R 

whence 
w(3) zzz - POk2r2 

-j-(3+vf(8-33v)-2((i+r)(8-33v)F(R)+ 400 (1 - 9.) 

- 

;sinnr+n,cosnr- 

From the graphs (Flg.1) of bending moments ;li,(1) (1 and 2) and ~~~(1)+~~~~3' 
(l'and 2') for the cases of the smallest roots of &uatlons (5.1) and 
h/A = 0.1 it Is &ear that for n1 - 2.332F1, where the rate of change of 
the load along a radius 1s not very large, the corrections determined by the 
function uJ3), will not be very slgnlflcant. In the case 
corrections turn out to be very significant: even for ?&'I o"r/p FkZ:eare 
commensurate with the values obtained from classical theory. 

It should be noted that for some forms of loading the corrections deter- 
mined by the function ~(~‘,wIll be very small. Thus in particular the cor- 
rections for a self-equilibrating parabolic load do not exceed 136 . Prom 
this one may conclude that there exist loads for which the classical theory 
Is sufficiently accurate 

For an example of a nonaxlsymmetrlc bending we consider the problem of a 
stress concentration 

We will consider the cylindrical bending of an infinite plate with a Clr- 
cular hole of radius I) 

We represent the stresses In the plate In the form Q= Qco'i- Q('), where 
(2 
(r) are the stresses in a solid plate under the action of bending moments 

M. =M and M, = 0 applied at infinity, and QW are the stresses in a plate 
containing a hole, which Is acted upon by a system of forces applied on its 
contour. 



As Is known (2 and 33, In a solid Infinite plate In cylindrical bending, 
the state of stress at the section corresponding to the contour of the hole 
Is 

M,(e) = + Vz M (1 + cos 20), M,(c) = l/z M (1 - ~0s 28). H,,(C) zz -1l/i Msin20 

1 aH(,c’ 
V,(c)= Qr’“‘+T~= - MR-’ cos 28, Q @) = 0 

r , Q,,(c) = 0 (4.4) 

The quantities Q(") are determined by the above stated method. Since the 
problem Is to redistribute the stresses on the contour of the hole, we ~111 
construct only the functions ~(1) and Y(l). In the case under consideration 
the stresses applied on the contour of the hole have the form 

u, = - V, Mh-2 5 (1 + cos 28), %ra = =I, Mhe8 6 sin 20, T,.~ = 0 

We have the homogeneous equation AA&)= 0 for the function &) with 
the Inhomogeneous boundary conditions 

(y>” = --/*M(i+COS2e), 
i a%!&' 
- --2%;;. =. MR-‘cos 20 
r a0 for r = R 

Hence 

On the contour of the hole 

M,(l) = + i 1+3v 
-~coS26 , 1 Hr(B1) = - M(1 --.v) . 

2 (3 t v) sln 2e 
4M 

QB(l) = (3 + v) R sin 20 

For the function y(l) we have the harmonic equation AY(l)(o,f)=O with 
the boundary conditions 

arp(l’ 
-=o for 5=+-.i, 

3M 3M(1--v) 

36 %rs (1) [I' =c[T+ 4(3 fv) 1 sin 20 for p=Rlh 

and we obtain y(l) In the form 

On the contour of the hole 

IZ&) 2M sin 20 Q,(:,', 3.38 Mh-’ = 

3+v ’ 
= - 

3+v 
sin 28 

In this manner we obtain on the contour of the hole 

Me = nf,(‘) + Me(l) + M& = M 1 - 3+ 
I 

2 (1 + v) + 5.07 + 1 1 cos 20 

H,, = H,f’ + H,(gl’ + H,&$ = 0 

Qe = Q,(c) + Qe(l) + Q (1) - “‘-’ 
otlj - 3fv 

c 
44-3.38 1 sin20 

For v = 0.3, R /A = 10, g = '1, .z we obtain nlas Al, = 1.94 Ai, k = 1.94. 

For v = 0.3, R /h = 3, 0 = ‘Ia n we obtain max M, = 2.3 M, k = 2.3. 
According to the calsslcal theory the coefficient of stress concentration 

in this case Is k = 1.79 , Independent of R/h . Consequently, If the 
stress concentration Is determined only on Me, one may assert that the 
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result of classical theory will be relatively accurate 
However, it is clear from the expression for Qe, that 
gentlal stresses zez will not be negligibly small and 
lected. 

only for R/?b > 10. 
the transverse tan- 
should not be neg- 

For small R/h the stress concentration coefficient rows and the clas- 
sical result becomes very inaccurate. Thus, even for R h = 3 the error In 7 
determining the stress concentration coefficient la about 
theory, It is upwards of 10 $ ) [4] . However, for small 74 

$ from Relssner’s 
A h /h < l), the 

problem becomes essentially three-dimensional, and none of the approximate 
methods, including that of the present article, may be used. 
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