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A method proposed in [1] for refining the classical theory of bending of
plates is considered in application to the problem of 2 circular plate and
an infinite plate with & circuler hole.

1. The problems formulated are solved in cylindrical coordinates. The
origin of the cylindrical system is chosen at the center of the circumference
of the plate in its middle plane, and the z-axls is perpendicular to this
plane. The thickness of the plate is 2n , and its radius is #. The state
of stress in the plate is the sum of the basic state of stress, as it was
called in [1], and two auxiliary states of stress which decay rapidly with
distance from the edge.

In the integration of the eguations of the three-dimensional problem in
elasticity theory, all stresses and displacements ¢ are written Iin the form

=5
Q= h““&}j p1 Q® (1.1)

s=1

where ¢ 1s an integer which in each iteration process for the varlous
stresges and displacements 1s chosen in the same manner a&s in [1].

For the basic state of stress which is constructed by means of the basic
iteration process, g has the values

g =2

g=0 for O, g = for u, v, g =3 for w

for O, Tgs Tppr g=1 for Tyz0 e

(1.2)

The system of equations [1] which 1s satisfied at each approximation by
the stresses and displacements Q') of this state of stress has in the pre-
sent case the followirg form in cylindrical coordinates:

acf(“ 1 o, N ar,tY n 57— o (1.3)
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‘arr{ﬁs} + 1 358{5i e 3T9§S) £ 2’{1'{85) e (3 atr{:} + i 8‘:‘9?} e 352:(3) “jx“ frg) =0
ar T 88 ' ey ' r ' ar r 80 - at
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The solution of the system (1.3) 1s represented as the sum Q;*’ + Q" ),
where %(&/ i1s the solution of the homogeneous system which we obtain by
discarding terms in Equations (1.3) with the superscripts (8—2) and (s -4),
and Q"‘ (8)"1s any particular solution of the inhomogeneous system (1.3), in
which the quantities with superscripts (s—2) and (s—4) are treated as
known., We easlily obtain the solution in in the form

o =w® ¢, 0,  w® =t (0, 2= (0

5 =5 (r, 0), sei?) = Lopl® (r, 0)
TRt 0, f =000 04580 (1.4)
Tty = Ll () 0) + oY (r, 0), o8 = 10,0 (r, 0) + Lo (r, 0)

(where only those powers of ( which correspond to the problem of bending
are retained).

We also have the relations

S (®) 1 dwe'®
(,)=__6w0 5y .. __ 1 0w
“ ar “ F 00
) 2y, (8)
___E a*wy® 1 dun'® 1 PP ‘
or1 1-—v’[ T\ o T o (.5)
s E i awO(s) i azwo(s) v,gz,‘,,,o(l*)
81 1—wt | r or r: 362 or?
o _E 1 9w _ 4 dwpt®
LT v |7 eree 2 a0
E 8 E 10
— y_ = = 8)
e =sa—war Aw®) %l = g 7 ap (Awo®)
(8) E (®) #» 10 10
Sy = — A — ) ddws A=+ 7atrom

The quantities Q"(*) are expressed in an elementary way in quadratures
with regpect to { . Recursion formulas for them are similar to the corres-
ponding formulas in Cartesian coordinates. As in Carteslan coordinates,
Q*®=0 for =1, 2.

Applying the boundary conditions on the upper and lower planes of the
plate
01(1) = +1,p(r, 0), Oz(s) =0 (s>2), Tr(zs) — 19;3) =0 (>1) for {= +1
(1.6)

we obtain
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(,_gix) = —1,p, 02(11) = 8/, p, Ung) - 01(12) =0
do )
(s) .1 * (s} 2 5
s} =1, 1@ —_— (s> 2)
= l[ ‘ 78 ]C=1
“ ()G * (S)
(5) — 1 2. ¥ (8) z E
6= 14|35 — % } (s >2) 1.7
o [ : 0% Ju=1
- (1) — A 2) . - (2) | 8) * (8)
Y120 "l(z‘) ’ "r(zo - ‘r(zz’ 1r(2’:) - tr(zz T2 e |K=I (s>2)
1) __ 1) 2 2) |- 3) * (8
Te(zu = To(z:z ) To ( ) =—1 (zz’ 1"9(;:) = Te(z?. — Ty, ¢ )‘t=1 (s>2

From Formulas (1.4) and (1.5) it is clear that the quantities Q‘”’ are
expressible in terms of the function (5}, which satisfles Equation
2 2 \2 2FEhs
(f’_ 1o .1__"’_.) w =g p_ 2ER (1.8)
ar: " r or ' r: o6t D 31 —n2)

2. The states of stress which can be made to decay rapidly as desired
with distance from the edge for sufficiently small n are delermined in [1]
with the help of the first and second variants of the auxiliarv iteration
process.

For the first variant, ¢ 1in Formula (1.1) takes the following values:
q= for T.9, Tg, g=h—1 for 0, 0q T, T;,

g=A—2 for u, w, g=h—1 for v 1)

The system of equations for Qm(s) in this case takes the form

a,,r(s) 161’%8) or.® c("l)—co"‘l)

+ Iy o —o, %Y

o—r(l) — (69(‘) + 61(3))

dp L) ag r op

a;;(;” + —:— (’%3(’—3) + %) + L’(’? =0, E ) _ o) —v (e, )  (22)

O o B C S B

azggs) N % aoisﬂ-z) + a,;;zﬂ L2 (:—1) —o. & k ;(cs) g ('iu;‘e ) 20 )T
E(i ﬁ‘(%_%r‘%’::_) _ ”(s;” >=2(1+v)1;g> (2.3)

Here and in the sequel the variables p and ( are introduced by the
substitution
2 = p1 7] J _ Bl (7]

Iz Q or a_p;

The rate of change of all the stresses and displacements with respect to
the variables p , 8 and ( 1s assumed to be of the same order. The quan~
tity r entering in the equations is defined by the equality r= R — dh..
where 0 << & < 1.

(fl'l?e sollttilon of the system (2.2) and (2.3) is also obtained in the form
+Q ) , where Q( )[s] and Q *(8) have the same meaning as in
the basic iteration process.
It i: easlly seen that in cylindrical coordinates only Q(l)“ (1) will be
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zero (in Cartesian coordinates Q" & and {}m* ¢} gre identically gero)

The equations satisfied by Qi '), break down into two systems, of which
the baslic one is the homogeneous system corresponding So {2.3). The equa-
tions of this basic system coinclde with the equations of torsion of a pris-
matic rod,

It 1s easily shown that the quantities len'l are expressible In terms of
the harmonic function ¥{p,() in the following manner:

agt ayt

- 5 s
fr-gi}g} = ey fgisgﬂm e Elfﬁ}is‘z =32 {ﬁ 4 i} ‘?}is
, 1 oy 1 o2p® .
El&m["] =21+ S'-; 55 4P Trgggl) = —S r ot de @4

1 oy® i ag® g a
sih=—21% dh=275 Fe=0 of) =0

Por the second variant of the auxiliary iteration process, ¢ in {1.1)
takes the values

g=p—1 for 0,0y0,1%,, g=p 2 for T toy 2.5)
g=p—2 for u,u, g=n -3 forp
The system of equations for Q{m(‘” are
35?‘{8} 4. 1_ 3fr§)8~2} " 5"7;«(;) N 52{3»1},“%(3-'1) —o
% 7 o8 & r 2.6)
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+ 1 S + =0
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gttt § gyte 2 L0 ) ) }
E W: srtISZ*_.?{aefs} 4+, E e + — )= 3, — ¥ {'*r{s' + ngs;}
Suw(® w8 ppl®
=0 =y o), E (Tp o) =AY
éh’r({f}_;_. g 238 ﬁtigj 2,50 -
T T F 88 e ' r
§ pul® | i@ g{s*i}) ) ( PRy {1 ul® 5 .
e e e =32 ¥ s Bl i =241 i
g(r 5 o ; A+ Bl G-+ ae) d+97." 29

5 *
The general solution of this system has the form Q(g}(’) :Q(g){ 1 + Qg @
and here Q"W =0 and Q" differs from zerc for sx>2.

The homogenecus sysbtem, whlch we obtain by setting the guantities in Egus-
tions (2.6} and {2.7)] with superscripts (g —1} anén% -2} egual to zero,
breaks into two systems, of which the basic system is the one corresponding
to (2.6)., The equations of the basic system coinecide with the eguations of
the problem of plane deformation.

The stresses and displacements ,["1 are expressed In terms of the bihare
)
monic function @8 @, &).

3, The determination of the state of bending stress in the plate reduces
to the successive {in order of inecreasing s )} determination of the Functions
weis},xyts} znd @iF

The boundary conditions for these functions were introduced in [1] in Car-

teslan coordinates; in cylindrical icgaordinates they differ only by the pre-
sence of terms with @ ,*® and Qg =

In the case of a plabe with free edges, one takes % = 2

IS

s M= 2 in
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Formulas {2.1) and {2.5).

For the determination of the function wy'®’ we have Equation (1.8), in

wh.’chh 0-2(3‘) on the right-hand side is determined by Formula (1.7), in parti-
cular

8 — v
1) 2) = 8) = s &
ng = — 1/4 P' ng) = 0» 01(3) =40 (1 — 'V) P (2.‘—/
The boundary condltions for the first three approximations for r =R
take the form
3¢ 3¢
*
ol =0, oP=_ ?X QUr[(lxl)dC, o) = — YS Le*®+ "r[(21}) + 0, (1()2) + sr*;(zz))) dt
-1 -1
(1)
1 07
xS 87'61 — 2%92) =0 2.9
(2) Lot * (2) L
1008 o @_ 3 AL TN 3 (@ pe*@
Foe =g | SR (wif i e
-~ -1 -1
1 0T @ 3 10 (pn 5
55 P = Sdg S + 56 (%o B4 @+l —

-1 -1

1
3{ *x@ *(3) * (3
@O G
-1

The function W& is harmonic, i.e. AY¥® (p, ) =0 in the reglon

PSS R/A L= +1.

As p = O the function Y together with its derivatives up to the second
order must vanish, this ensures the decay of thls state of stress with dis-
tance inward from the edge of the plate.

The boundary conditions for y{®) in particular for Yy} and W2 have the

form oW JoE =0 for L=+ 1
(2.10)
*
Tr£)1(11) = Qrﬁle)l, Trgz(]n = Crr(ezx) —Tre g; for p=R/h

The f‘urmt::tgr}x2 /cgis’ is biharmonic, i.e. AAD® (p, 8 =0 1n the region

E==41 p< , and it must vanish together with its derivatives up to
third order for p - 0

The boundary conditions for @(®, in particular, for @) and O?) have
the form for =41 O =0 a0 /oL =0

) I 1l 3 ¢ 11l dtr[zl(]z)
for p=R/h o) =—slh+ el =0
21

r{1)
3 1
2 2 : *(3 2 X @ g * (@)
==~ =0\ ot O — 5t g Lo @ o lgh o + o g
-1
2 2 * (2) *(2)
ov, L __ 9 & +e (L o 2 (2)) + 4 e _ 9Tz
ot o T 722 r 96 a

We note that in the axisymmetric c?ﬁe o‘f ber}g}ng of a plate, we have homo-
geneous equations in the functions ¥V, @ U we® and ¢ (2" with homogenenus

boundary conditions, hence in this case these functlons are identically zero.
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&, We will call the rate of growth or decay (with decreasing A ) of the
stresses and displacements thelr order. Then 1t follows from (1.2) that the
order of the stresses and displacements determlined by the function

w8 — hs—4w0(s),
is
G Gy Trg~ h*3, 1, T, ~ 1% 0, ~F7, u,0~h73, w~ht (G
while the quantities assoclated with \}f(s), are from (2.1)
Trgs Ty~ B3, 0., 00,0, T, ~ B uw e~k v~ R (4.2)
and 1t is clear from (2.5) that the quantities related to @, are
Ops Ogy Oga Ty~ B¥2, T, T, ~B*Y, u,w~0"1 v~hf (4.3)

The problem of deriving various approximate theories of bending of a plate
may be treated as a problem of carrying out some number of approximations in
the basic and auxiliary iteration processes. Thus, the classical theory may
be considered as the problem of forming the first approximation of the basic
iteratlon process.

The basic state of stress determines more or less accurately the stresses
far from the edges of the plate, For g =1 1t follows from 4,1) that far
from the edges of the plate the main stresses are 0U,, 05 and T,3; the stres-
ses T,,, 79, and particularly ¢, are secondary stresses.

For the free edge of a plate (here we consider only the free edge), there
are superimposed on the basic state of stress additional states of stress
which decay very rapidly (for small A ) with distance from the edge. The
order of these edge stresses can be seen from Formulas (4.2) anc (4.3). For
@ =1 1t follows from (4.2) that the corrections obtained at the edge in
the principal stresses of the basic state of stress are relatively small for

0, and Oy but the correction in <, 18 of the same order as 7,9 itself
in the basic state of stress. Moreover, the stress Ty,, attains the same
order at the edge as the principal stresses in the basic state of stress.
(According to classical theory even the order of. Ty, 2t the edge cannot be
determined correctly) Wenote that the presence on the free edge of stresses
T, and 1Ty, of the same order as the principal stresses determined by clas-
sical theory 1s due to the twisting of the edge.

From the preceding analysis which refers only to the case of & free edge,
it follows that with the help of the classical theory of plates, the state
of stress may be determined in the first approximation both far from the
edge and on the edge only in the axisymmetric case of bending, where there
is no twisting of the edge. In the nonaxisymmetric case it 1s necessary to
construct the functions w0117and y() in order tc determine in the first
approximation the state of stress both far
from the edge and at the edge. The stres- Mr -
ses 0., 0g, 1,9 and 1y, wlll be the quantli-

ties of order HK®°, while T, ~K', g,~ 9. a.04 \ \

The first refinement, i.e. retaining

terms of order A 1n comparison to terms 206 \2'
of order An°, 1s determined by the func- it N
tion w,?; far from the edge. -In order to - M-
obtain a refinement of the same order in 2
the edge stresses, 1t 1s necess to con- 204
struct the functions @) and y{? as well, +/‘1,.\

.. An the axisymmetric case of bending, 1
w'* = U, hence the first refinement inthe a2

stresses far from the edge 1s determined
by the function w,®) and for 0,, 63 and i
Tre will be of order n°.

1

We will consider some examples, repla- i- j 5- ;7?’ %V
cing (%) everywhere in tt;e following by -
the function w'®) = p*4y,® the meaning of Fig. 1

(#)

|~}
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which 1s ciear from the series {1.1) for  1in the basic iteration process.

5. A ecircular plate of radius R and thickness 2n with a free edge is
bent under the action of an axlsymmetric load of intensity

p== pycosnr

The load will be self-equilibrating if » satisfies Equation
2km nR
n="F=  Or wnye = Al (k=1,2,3,..1 6.4
We will refine the values of the stress only far from the edge, for which
we need construct only the functions p) and w'®

For w'*) in the axisymmetric case we have

d* 1 d\2 P
(a*;‘g ';-‘17) vt = -Dg cos nr, Gr(ln =0, ’Cr(zlz) = 0 for r=~R
whence

P2 6(1—w) . 8(1—
i = mm[wécos nB—(3+v)+% sin nR — —(;@T"—) (1 —cosnR) —

r

-2(1+ v)F(R)] + Z%’,;g[-—',{- sin nr+—:-zcos nr+ (%—- ﬂ)F(r)] (p (" .__S_i.;.c_os"ldr)

For »® we obtain Equation

d2 1 d\® 1 (8 — 3v) Poi? nsinnr
—_ 8 A T e o
(dr2+rdr)w =D 10{d —w) (”2c°5“’+ y )
3(8 — 3v) P, 3@+ wP[ 1 . 1 —cosnR
cr}3)mmc05nR——T—~9[ﬁ$nnﬂu~W] for r = R
whence

P st
w(3)=—z@%1‘g‘:‘;z§[—-(3+'V)(S——Sv)—2(1+v){8—3v)F(R)+

2{1 —v) (8 — — —
PRUZNET o 26T

Poh? (8 — 3v) [2r . 6 8
D (T L Sin o eos nr — (22— 2) F (o)

From the graphs (Fig.l) of bending moments A7,V (1 and 2) and A4 M P
{1’and 2’) for the cases of the smallest roots of Equations (5.1) and
R = 0.1 1t 1s &8lear that for pn, = 2.332R7, where the rate of change of
the load along a radius 1s not very large, the corrections determined by the
function 3 will not be very significant. In the case n,= 2n/R these
corrections turn out to be very significant: even for R = 0,1 they are
commensurate with the values obtained from classical theory.

It should be noted that for some forms of loadlng the corrections deter-
mined by the function '3’ will be very small. Thus in particular the cor-
rections for a self-equilibrating parabolic load do not exceed 1% . PFron
this one may conclude that there exist loads for which the classlical theory
is sufficiently accurate

For an example of & nonaxisymmetric bending we consider the problem of a
stress concentration

We will conslider the cylindrical bending of an infinite plate with a cir-
cular hole of radius R

We represent the stresses in the plate in the form Q= Q0 - Q(c), where

() are the stresses 1n a solid plate under the actlion of bending moments
M =N and ¥, = O applled at infinity, and (0) are the stresses in a plate
containing a hole, which is acted upon by a system of forces applled on its
contour,
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As 1s known [2 and 3], in a solid infinite plate in cylindrical bending,

the state of stress at the section corresponding to the contour of the hole
is

MO =41, M{#+cos20), M =1; M1 —cos20), H,=—1/,Msin20
(c)

oH
V0= QO 4+ 5

= — MR'cos20, Q=0 Q@ =0  (44)

The quantities Q(U) are determined Ly the above stated method. Since the
problem 18 to redistribute the stresses on the contour of the hole, we wili
construct only the functions 1) and Wt (),  In the case under consideration
the stresses applied on the contour of the hole have the form

0, = —3 Mh?L (1 + cos20), =23, Mh?;sin20, 1,=0

We have the homogeneous equation AAw(l) = 0 for the function w»'! with
the inhomogeneous boundary conditions

(1)

) s 1 Toroy M) — MR- cos 2 f =R
o= —3 M1 + cos 26), T 56 — 2Trz3 — MR cos 20 or r=
Hence

MR? 1 1 R?
w(1)=—W[mln r—{—mo—w) €os 20]
On the contour of the hole
M 14 3v M{A—v) .
- = () — _ 22\ '
M, —2[1 3+v00320] H ——2(3‘1"’) sin 20

(1)_—__. 3
Qo —(3+V)Rsln 20

For the function () we have the harmonic equation AW¥{1(p,{)=0 with
the boundary conditions

oy 3M  3M{1—v)7 . _
=0 lt=kt i =T gy i e e =R/

and we obtain (1) in the form

48M sin 29 (=1 @s—1n (R . @s—N=
) — 3+ v)n? 2 (2s — 1)y exp[ 2 (-h— — p)] sin——5——§

On the contour of the hole
5.07M cos 20 A 2M sin 20 3.38 Mh!
a . T2 y (1) 27 Ay 1) o
My'q) 3¥v R Mew="3F1y > Qo=—""31v
In this manner we obtain on the contour of the hole

1 A
My= M+ MM+ M) = M {1 —357 v[z (A + v) + 5.07 ﬁ] cos 20}

Hgo=H, (0) +H (l)+ Hrl()l()l) =0

() ) — Mh h
Qo= Q'+ Q4™ + Q1Y) 3+v[4 338]sm26
For v =03, R/h =10, 8 =1/, x we obtain max My = 1.94 M, k = 1.%.
For v=0.3, R/h=3, 6 =1/, x We obtain max My= 23 M, k= 23.

According to the calssical theory the coefficient of stress concentration
in thls case is % = 1.79 , independent of R/h . Consequently, if the
stress concentration is determined only on AM,, one may assert that the

n 20
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result of classical theory will be relatively accurate only for R/n >10.

However, 1t 1s clear from the expression for g, that the transverse tan-
gential stresses Ty, will not be negligibly small and should not be neg-

lected.

For small R/n the stress concentration coefficlent grows and the clas-
sical result beeomes very inaccurate. Thus, even for R/h = 3 the error in
determining the stress concentration coefficient ia about % (from Reissner's
theory, it is upwards of 10%) [4]. However, for small R/h /h < 1), the
problem becomes essentially three-dimensional, and none of the approximate
methods, including that of the present article, may be used.
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